Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs.
نویسندگان
چکیده
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O-H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.
منابع مشابه
Discovery of potent parthenolide-based antileukemic agents enabled by late-stage P450-mediated C-H functionalization.
The sesquiterpene lactone parthenolide has recently attracted considerable attention owing to its promising antitumor properties, in particular in the context of stem-cell cancers including leukemia. Yet, the lack of viable synthetic routes for re-elaborating this complex natural product has represented a fundamental obstacle toward further optimization of its pharmacological properties. Here, ...
متن کاملPorous Acidic Catalyst, Functionalized with Imidazole Ionic Liquid ([SBA-Im]HSO4) as a Novel Phase Transfer Catalyst for The Aqueous Synthesis of Benzyl Thiocyanates and Azides
In the present study, application of porous acidic catalyst functionalized with an imidazoleionic liquid ([SBA-Im]HSO4) as a phase transfer catalyst for the facile preparation of benzylthiocyanates and azides in water has been described. The catalyst has been characterized byFourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmissionelectron microscopy (TEM...
متن کاملEfficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite
A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...
متن کاملEfficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite
A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...
متن کاملRational Design, Synthesis and Computational Structure-Activity Relationship of Novel 3-(4-Chlorophenyl)-5-(3-Hydroxy-4-Ethoxyphenyl)-4,5-Dihydro-1H-Pyrazole-1-Carboxamide
Densely functionalized 3-(4-chlorophenyl)-5-(3-hydroxy-4-etoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized in an expedient manner through specification and transamidation respectively, of ester-functionalized pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole scaffold were adjusted to optimize inhibition of protein kina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioorganic & medicinal chemistry
دوره 24 17 شماره
صفحات -
تاریخ انتشار 2016